Worksheet 23, Math H53 Curl and Divergence

Tuesday, April 21, 2013

- 1. Find the curl and the divergence of the vector field $\mathbf{F}(x, y, z) = xye^{z}\mathbf{i} + yze^{x}\mathbf{k}$.
- 2. Find the curl and the divergence of the vector field $\mathbf{F}(x, y, z) = \langle x/y, y/z, z/x \rangle$.
- 3. Let f be a scalar field and \mathbf{F} a vector field. Determine whether each expression is meaningful. If not, explain why. If so, state whether it is a scalar field or a vector field.

(a) $\operatorname{curl} f$	(e) $\nabla \mathbf{F}$	(i) $\operatorname{curl}(\operatorname{curl} \mathbf{F})$
(b) ∇f	(f) $\nabla(\operatorname{div} \mathbf{F})$	(j) $\operatorname{div}(\operatorname{div} \mathbf{F})$
(c) div \mathbf{F}	(g) $\operatorname{div}(\nabla f)$	(k) $(\nabla f) \times (\operatorname{div} \mathbf{F})$
(d) $\operatorname{curl}(\nabla f)$	(h) $\nabla(\operatorname{div} f)$	(l) $\operatorname{div}(\operatorname{curl}(\nabla f))$

- 4. Determine whether or not the vector field $\mathbf{F}(x, y, z) = y^2 z^3 \mathbf{i} + 2xyz^3 \mathbf{j} + 3xy^2 z^2 \mathbf{k}$ is conservative. If it is, find a function f such that $\mathbf{F} = \nabla f$.
- 5. Determine whether or not the vector field $\mathbf{F}(x, y, z) = xyz^2\mathbf{i} + x^2yz^2\mathbf{j} + x^2y^2z\mathbf{k}$ is conservative. If it is, find a function f such that $\mathbf{F} = \nabla f$.
- 6. Determine whether or not the vector field $\mathbf{F}(x, y, z) = e^{yz}\mathbf{i} + xze^{yz}\mathbf{j} + xye^{yz}\mathbf{k}$ is conservative. If it is, find a function f such that $\mathbf{F} = \nabla f$.
- 7. Is there a vector field **G** on \mathbb{R}^3 such that curl $\mathbf{G} = \langle x \sin y, \cos y, z xy \rangle$? Explain.
- 8. Show that any vector field of the form

$$\mathbf{F}(x, y, z) = f(y, z)\mathbf{i} + g(x, z)\mathbf{j} + h(x, y)\mathbf{k}$$

is incompressible.

9. Show that any vector field of the form

$$\mathbf{F}(x, y, z) = f(x)\mathbf{i} + g(y)\mathbf{j} + h(z)\mathbf{k},$$

where f, g, h are differentiable functions, is irrotational.

10. If $\mathbf{r}(x, y, z) = \langle x, y, z \rangle$ and $r = |\mathbf{r}|$, verify the identity:

(a)
$$\nabla r = \mathbf{r}/r$$

(b) $\nabla \times \mathbf{r} = \mathbf{0}$
(c) $\nabla(1/r) = -\mathbf{r}/r^3$
(d) $\nabla \ln r = \mathbf{r}/r^2$

11. We have seen that all vector fields of the form $\mathbf{F} = \nabla g$ satisfy the equation $\operatorname{curl} \mathbf{F} = \mathbf{0}$ and that all vector fields of the form $\mathbf{F} = \operatorname{curl} \mathbf{G}$ satisfy the equation div $\mathbf{F} = 0$ (assuming continuity of the appropriate partial derivatives). This suggests the question: Are there any equations that all functions of the form $f = \operatorname{div} \mathbf{G}$ must satisfy? Show that the answer to this question is "No" by proving that every continuous function f on \mathbb{R}^3 is the divergence of some vector field.