Worksheet 13, Math 53 Parametric Surfaces and Surface Integrals

Wednesday, November 28, 2012

- 1. Determine a parametric representation of the part of the sphere $x^2 + y^2 + z^2 = 16$ which lies above the cone $z = \sqrt{x^2 + y^2}$.
- 2. Determine a parametric representation of a Möbius strip.
- 3. If the surface S is represented by z = f(x, y) on the domain $x^2 + y^2 \le R^2$, and you know that $|f_x| \le 1$ and $|f_y| \le 1$, then what can you say about the surface area of S?
- 4. Evaluate the surface integral $\iint_S y^2 dS$, where S is the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies inside the cylinder $x^2 + y^2 = 1$ and above the xy-plane.
- 5. Evaluate the surface integral $\iint_S \langle xy, 4x^2, yz \rangle \cdot d\mathbf{S}$, where S is the surface $z = xe^y$ for $0 \le x \le 1$ and $0 \le y \le 1$, with upward orientation.
- 6. Let **F** be an inverse square field, that is, $\mathbf{F}(\mathbf{r}) = c\mathbf{r}/|\mathbf{r}|^3$ for some constant *c*, where $\mathbf{r} = \langle x, y, z \rangle$. Show that the flux of **F** across a sphere *S* with center the origin is independent of the radius of *S*.