Worksheet 12, Math 53 Green's Theorem, Divergence and Curl

Monday, November 19, 2012

1. It appears as if Green's theorem tells us that

$$\int_C x \, dx = \iint_D 0 \, dx \, dy = 0$$

But we know from single-variable calculus that

$$\int x \, dx = \frac{x^2}{2} + C$$

Is something amiss?

- 2. Compute $\int_C y^2 dx + x dy$ where C is the ellipse $x^2/a^2 + y^2/b^2 = 1$ oriented counter-clockwise.
- 3. Compute $\int_C (y + e^{\sqrt{x}}) dx + (2x + \cos y^2) dy$, where C is the boundary of the region enclosed by the parabolas $y = x^2$ and $x = y^2$, with positive orientation.
- 4. Let C be a closed curve. What geometric quantity does the line integral

$$\frac{1}{2}\int_C -y\,dx + x\,dy$$

 $compute?^1$

- 5. Let $\mathbf{F}(x, y, z) = -y\mathbf{i} + x\mathbf{j} + 0\mathbf{k}$.
 - (a) Sketch \mathbf{F} in the *xy*-plane.
 - (b) Compute curl **F** and include it in your previous sketch.
 - (c) What is curl **F** telling us about the fluid flow?
- 6. Let $\mathbf{F}(x, y) = x\mathbf{i} + y\mathbf{j}$, and $\mathbf{G}(x, y) = -x\mathbf{i} y\mathbf{j}$.
 - (a) Sketch \mathbf{F} and \mathbf{G} .
 - (b) Compute div \mathbf{F} and div \mathbf{G} .
 - (c) For both \mathbf{F} and \mathbf{G} , state if the origin is a fluid source or sink.
- 7. Determine whether or not the vector field $\mathbf{F}(x, y, z) = e^{yz}\mathbf{i} + xze^{yz}\mathbf{j} + xye^{yz}\mathbf{k}$ is conservative.

¹There is a device used by surveyors called a *mechanical integrator* that uses this fact to find areas by tracing out boundaries.