
Worksheet 12 Solutions, Math 53
Green’s Theorem, Divergence and Curl

Monday, November 19, 2012

1. It appears as if Green’s theorem tells us that∫
C

x dx =

∫∫
D

0 dx dy = 0.

But we know from single-variable calculus that∫
x dx =

x2

2
+ C.

Is something amiss?

Solution

Nothing is amiss. The reason for this seemingly unintuitive result lies in the fact that the curve is
closed. Working from the definitions, we see that the line integral

∫
C
x dx actually gives us a definite

integral of the form ∫ x1

x0

x dx,

where x0 is the x-coordinate of the starting position of the curve C, and x1 is x-coordinate of the
ending position. But since C needs to be closed in order for Green’s theorem to apply, we see that x1
is actually equal to x0. This is what induces the supposed discrepancy:∫ x1

x0

x dx =

∫ x0

x0

x dx = 0.

2. Compute
∫
C
y2 dx+ x dy where C is the ellipse x2/a2 + y2/b2 = 1 oriented counter-clockwise.

Solution Idea

Green’s Theorem translates the line integral into a double integral over the domain contained by the
ellipse, and a change of variables x = au and y = bv translates the domain to a circle, giving a final
value of πab.

3. Compute
∫
C

(y + e
√
x) dx + (2x + cos y2) dy, where C is the boundary of the region enclosed by the

parabolas y = x2 and x = y2, with positive orientation.

Solution

Applying Green’s Theorem gets rid of the funny-looking terms:∫
C

(y + e
√
x) dx+ (2x+ cos y2) dy =

∫∫
D

(2− 1) dA =

∫ 1

0

∫ √
x

x2

1 dy dx

=

∫ 1

0

√
x− x2 dx =

[
2x3/2/3− x3/3

]∣∣∣1
0

= 1/3
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4. Let C be a closed curve. What geometric quantity does the line integral

1

2

∫
C

−y dx+ x dy

compute?1

Solution

Applying Green’s theorem to the integral gives us that

1

2

∫
C

−y dx+ x dy =

∫∫
D

1 dA = A(D),

where D is the domain contained by the closed curve C. Thus this line integral actually computes the
area contained by the curve C, using only information about the coordinates of the boundary points.

5. Let F(x, y, z) = −yi + xj + 0k.

(a) Sketch F in the xy-plane.

(b) Compute curlF and include it in your previous sketch.

(c) What is curlF telling us about the fluid flow?

Solution Sketch

The sketch of F in the xy-plane consists of arrows perpendicular to a line to the origin, pointing in a
counterclockwise direction, with length equal to the distance from the origin.

A quick computation shows that the curl is constant equal to 〈0, 0, 2〉, which indicates that an infinites-
imal parcel of fluid located at a point in this fluid flow is rotating at a rate of 2 radians per second in
the counterclockwise direction in the xy-plane.

6. Let F(x, y) = xi + yj, and G(x, y) = −xi− yj.

(a) Sketch F and G.

(b) Compute divF and divG.

(c) For both F and G, state if the origin is a fluid source or sink.

Solution Sketch

The sketch of F consists of arrows pointed away from the origin of length equal to the distance from
the base point to the origin, while the sketch of G consists of arrows pointed directly to the origin, in
particular with length equal to the length from the base point to the origin.

Some quick computations show that divF(x, y) = 2, and divG(x, y) = −2, i.e. that the divergence for
both vector fields is constant for all points (x, y). The sketches then indicate that the origin is a fluid
source for F and a fluid sink for G.

1There is a device used by surveyors called a mechanical integrator that uses this fact to find areas by tracing out boundaries.
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7. Determine whether or not the vector field F(x, y, z) = eyzi + xzeyzj + xyeyzk is conservative.

Solution

The partial derivatives of F are enumerated by the Jacobian matrix

JF =

∂P/∂x ∂P/∂y ∂P/∂z
∂Q/∂x ∂Q/∂y ∂Q/∂z
∂R/∂x ∂R/∂y ∂R/∂z

 =

 0 zeyz yeyz

zeyz xz2eyz xeyz + xyzeyz

yeyz xeyz + xyzeyz xy2eyz

 ,
and from this we can see that all of the partial derivatives are continuous. Computing the curl of F
gives us

curlF =

〈
∂R

∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

〉
= 〈0, 0, 0〉 .

As we have seen, if all partial derivatives are continuous and the curl is zero, then the vector field is
conservative.

3


