Worksheet 5, Math 1B Sequences and Series

Wednesday, February 22, 2012

- 1. Show that if $\{a_n\}$ is a sequence defined recursively by $a_{n+1} = f(a_n)$ where f is a continuous function, and if $\{a_n\}$ is convergent, then the limit of $\{a_n\}$ is a "fixed point" of f, that is, a point a such that f(a) = a.
- 2. Find an example of a recursively defined sequence $\{a_n\}$ with $a_{n+1} = f(a_n)$ for f continuous, such that f has a fixed point, and yet a_n diverges.
- 3. Show that the sequence defined by

$$a_1 = 2$$
 $a_{n+1} = \frac{1}{3 - a_n}$

satisfies $0 < a_n \leq 2$ and is decreasing. Deduce that the sequence is convergent and find its limit.

- 4. Fibonacci posed the following problem: Suppose that rabbits live forever and that every month each pair produces a new pair which becomes productive at age 2 months. If we start with one newborn pair, how many pairs of rabbits will we have in the *n*th month? In fact, a little thought reveals that this number is given by f_n , the *n*th Fibonacci number, defined by $f_0 = f_1 = 1$, and $f_n = f_{n-1} + f_{n-2}$. Let $a_n = f_{n+1}/f_n$ and show that $a_{n-1} = 1 + 1/a_{n-2}$. Assuming that $\{a_n\}$ is convergent, find its limit. What does this limit say about the behavior of the Fibonacci numbers for large values of n?
- 5. Determine whether the series is convergent or divergent.

(a)
$$\sum_{n=0}^{\infty} \frac{n^2}{n^3 + 1}$$

(b)
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

(c)
$$\sum_{n=3}^{\infty} \frac{n^2}{e^n}$$

6. If the *n*th partial sum of a series $\sum_{n=1}^{\infty} a_n$ is

$$s_n = \frac{n-1}{n+1},$$

find a_n and $\sum_{n=1}^{\infty} a_n$.

7. If $\sum a_n$ is convergent and $\sum b_n$ is divergent, show that the series $\sum (a_n + b_n)$ is divergent. [*Hint:* Argue by contradiction.]