Worksheet 1, Math 1A Limits

Monday, September 16, 2013

1. Evaluate the limit if it exists:

(a)
$$\lim_{t \to 1} \frac{t^4 - 1}{t^3 - 1}$$

(b)
$$\lim_{t \to 0} \left(\frac{1}{t} - \frac{1}{t^2 + t} \right)$$

(c)
$$\lim_{h \to 0} \frac{(2 + h)^3 - 8}{h}$$

(d)
$$\lim_{x \to -4} \frac{\sqrt{x^2 + 9} - 5}{x + 4}$$

- 2. Prove that $\lim_{x\to 0^+} \sqrt{x} e^{\sin(\pi/x)} = 0.$
- 3. Prove that $\lim_{x\to 2}(x^2-4x+5)=1$ using the ϵ, δ definition of a limit.
- 4. Use the definition of continuity and the properties of limits to show that the function $f(x) = 2\sqrt{3-x}$ is continuous on the interval $(-\infty, 3]$.
- 5. Find a continuous function $g : \mathbb{R} \to \mathbb{R}$ which is equal to $f(x) = (x^2 x 2)/(x 2)$ wherever f is defined.
- 6. Prove that cosine is a continuous function.