Name:

Math 110, Section 105, Quiz 9 Wednesday, October 25, 2017

This quiz will be graded out of 15 points; the True/False question is worth 3 points, and the exercise is worth 12 points. Please read the instructions carefully, and explain your work.

True or False. Mark the following statements as either true or false, or leave a blank if you don't know. A correct answer is worth +1 point, a blank is worth 0 points, and an incorrect answer is worth -1 points, so be smart about guessing!

- a. _____ Any eigenspace of a linear operator T is T-cyclic.
- If T is a linear operator on a vector space V, then any T-invariant subspace of V b. _____ is *T*-cyclic.
- Let T be a linear operator on a finite-dimensional vector space V with dimension n. c. _____ Then there exists a polynomial q(t) of degree at most n-1 such that $T^n = q(T)$.

Solution. F F T

⋇

Exercise. Let $V = \mathbb{R}^4$ and let T be a linear operator on V given by T(x, y, z, w) = (x + y, y - z, w)z, x + z, x + w). Find a basis of the T-cyclic subspace generated by the vector $v = e_1$, and prove it is a basis.

Solution. Let W denote the T-cyclic subspace generated by e_1 . If k is the smallest number such that $\{e_1, T(e_1), \ldots, T^k(e_1)\}$ is linearly dependent, then the set $\{e_1, T(e_1), \ldots, T^{k-1}(e_1)\}$ forms a basis of W. In particular, we compute

$$T(1,0,0,0) = (1,0,1,1)$$

$$T(1,0,1,1) = (1,-1,2,2)$$

$$T(1,-1,2,2) = (0,-3,3,3)$$

Notice that (0, -3, 3, 3) = 3(1, -1, 2, 2) - 3(1, 0, 1, 1), so the set $\{e_1, \ldots, T^3(e_1)\}$ is linearly dependent. If $\{e_1, \ldots, T^2(e_1)\}$ is linearly independent, then it forms a basis. Row reducing, we have

$\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$	1 0 1	$\begin{pmatrix} 1 \\ -1 \\ 2 \\ 2 \end{pmatrix}$	~	$\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$	$\begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \end{array}$	$\begin{pmatrix} 1 \\ 2 \\ -1 \\ 0 \end{pmatrix}$	~	$\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array} $	$\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$
$\left(0 \right)$	1	$_2)$		$\sqrt{0}$	0	0/		$\left(0 \right)$	0	0/

Thus all three columns are pivot columns, and we see that the set is linearly independent. Thus $\beta = \{(1, 0, 0, 0), (1, 0, 1, 1), (1, -1, 2, 2)\}$ gives a basis of W.