Name:

Math 110, Section 101, Quiz 8 Wednesday, October 18, 2017

This quiz will be graded out of 15 points; the True/False question is worth 3 points, and the exercise is worth 12 points. Please read the instructions carefully, and explain your work.

True or False. Mark the following statements as either true or false, or leave a blank if you don't know. A correct answer is worth +1 point, a blank is worth 0 points, and an incorrect answer is worth -1 points, so be smart about guessing!

- a. _____ If λ_1 and λ_2 are distinct eigenvalues of a linear operator T with corresponding eigenspaces E_{λ_1} and E_{λ_2} , then $E_{\lambda_1} \cap E_{\lambda_2} = \{0\}$.
- b. _____ A real matrix may have exactly two eigenvectors.
- c. _____ The sum of two linearly independent eigenvectors is never an eigenvector.

Solution. T F F

⋇

Exercise. Find a basis of eigenvectors for the matrix

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 0 \\ -1 & 1 & 1 \end{pmatrix}$$

Solution. We compute the characteristic polynomial

$$\operatorname{char}_{A}(\lambda) = \det(A - \lambda I) = (1 - \lambda)(2 - \lambda)(1 - \lambda) - (2 - \lambda) = \lambda(\lambda - 2)^{2}$$

Thus we have two eigenvalues $\lambda = 0$ and $\lambda = 2$. The corresponding matrices $A - \lambda I$ and row-reduced forms are

$$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 0 \\ -1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad \begin{pmatrix} -1 & 1 & -1 \\ 0 & 0 & 0 \\ -1 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

For $\lambda = 0$, we compute the null space by $x_1 = x_3$ and $x_2 = 0$, so the space is spanned by (1, 0, 1). For $\lambda = 2$, the null space is described by $x_1 = x_2 - x_3$, so it is spanned by (1, 1, 0) and (1, 0, -1). Thus an eigenbasis for A is given by the union of these spanning sets:

$$\beta = \left\{ \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\}$$