Math 110, Section 103, Quiz 7 Wednesday, October 11, 2017

This quiz will be graded out of 15 points; the True/False question is worth 3 points, and the exercise is worth 12 points. Please read the instructions carefully, and explain your work.

True or False. Mark the following statements as either true or false, or leave a blank if you don't know. A correct answer is worth +1 point, a blank is worth 0 points, and an incorrect answer is worth -1 points, so be smart about guessing!

a. _____ If A is an n × n matrix with rank n, then the reduced row echelon form of A is I_n.
b. _____ If A is an invertible matrix, then det(A⁻¹) = -(det(A))⁻¹
c. _____ For any two n × n matrices A and B, det(AB) = det(BA).

Solution. T F T

*

Exercise. Evaluate det(A) for the following matrix A by using row reduction to transform the matrix to a simpler form.

$$A = \begin{pmatrix} 1 & 0 & -2 & -1 \\ -3 & 1 & 1 & 2 \\ 0 & 4 & -1 & 1 \\ 2 & 3 & 0 & 1 \end{pmatrix}$$

Solution. We use row reduction to reduce A to an upper triangular form, using only the operation of adding a multiple of one row to another so that the determinant is preserved at each step. We have

	(1)	0	-2	-1		1	0	-2	-1		/1	0	-2	-1
$A \sim$	0	1	-5	-1	\sim	0	1	-5	-1	\sim	0	1	-5	-1
	0	4	-1	1		0	0	19	5		0	0	19	5
	0	3	4	3/		$\setminus 0$	0	19	6/		0	0	0	1/

Thus det(A) is given by the product of the entries along the main diagonal of this upper triangular matrix, so det(A) = 19.