Math 110, Section 101, Quiz 3 Wednesday, September 13, 2017

This quiz will be graded out of 15 points; the True/False question is worth 3 points, and the exercise is worth 12 points. Please read the instructions carefully, and explain your work.

True or False. Mark the following statements as either true or false, or leave a blank if you don't know. A correct answer is worth +1 point, a blank is worth 0 points, and an incorrect answer is worth -1 points, so be smart about guessing!

a. _____ In P(ℝ), the function T : p → p' + x is linear, where p' denotes the derivative of p.
b. _____ The set {(1,2,3), (2,1,-2), (0,1,1), (3,4,0)} is linearly independent in ℝ³.
c. _____ If T : V → W is a linear transformation and β is a basis of V, then T is determined by its values on β.

Solution. F F T

¥

Exercise. In $V = P_2(\mathbb{R})$, show that the map $T: V \to V$ given by

 $T(p) = x \cdot p'$

is a linear transformation. Find a basis for ker T (and show it is a basis).

Solution. To check that T is linear, we need to check that it respects vector space addition and scalar multiplication. In particular, for $p, q \in P_2(\mathbb{R})$, and for $a \in \mathbb{R}$, we have

$$T(p+q) = x \cdot (p+q)' = x \cdot (p'+q') = x \cdot p' + x \cdot q' = T(p) + T(q)$$

and

$$T(ap) = x \cdot (ap)' = x \cdot a(p') = a(x \cdot p') = aT(p)$$

Thus T is linear. To compute ker T, note that for an arbitrary polynomial $p(x) = ax^2 + bx + c$, we have that $T(p) = x \cdot (2ax + b) = 2ax^2 + bx$, which is zero if and only if a = b = 0. Thus ker T consists of the constant polynomials $\{c : c \in \mathbb{R}\}$.

In particular, the set containing only the constant polynomial 1 is a basis of ker T. It spans because for any $c \in \mathbb{R}$, the constant polynomial c can be written as $c \cdot 1$, and thus is in the span of $\{1\}$. Likewise, any single nonzero vector is linearly independent, so we see that $\{1\}$ forms a basis of ker T.